17 May 2022 | Tuesday | News
Image Source : Public Domain
GenScript USA Inc., the world's leading life-science research tools and services provider, announced the availability of new GMP-grade GenExact™ single-stranded DNA (ssDNA) and GenWand™ closed-end linear double-stranded DNA (dsDNA) services. These services will enable next-generation gene and cell therapy R&D programs to advance to IND filing and clinical trials faster and more efficiently.
Today's announcement, made at the American Society of Gene & Cell Therapy (ASGCT) 25th annual meeting (booth #280), further establishes GenScript as the leading provider of non-viral homology-directed repair (HDR) template solutions for immune-cell engineering. GenScript now offers varying grades of non-viral HDR payload materials that support use cases across early discovery research, process development, and clinical studies.
CRISPR-based non-viral gene insertion methods have gained popularity among research teams with concerns about the FDA's recent draft guidance concerning the use of viruses for gene and cell therapy. Non-viral HDR templates, in combination with CRISPR technology, can accelerate cell engineering compared to traditional GMP virus-based engineering, delivering results faster than alternate techniques.
"This new investment by GenScript demonstrates our commitment to non-viral delivery technology. We look forward to continuing to work with our partners and stakeholders in academia and industry to support their cell therapy R&D programs and further development of non-viral delivery platforms and workflows," said Ray Chen, PhD, president of GenScript USA Life Science Group. "We know this technology will be a more efficient and safer solution for cell engineering."
New services designed to support both INDs and Phase 1 clinical trials
GenScript's GMP ssDNA And dsDNA services enable faster CAR-T drug development:
GenScript has been collaborating with several academic and industry partners in the development of CRISPR non-viral gene insertion. Recently, Dr. Alex Marson's lab at UCSF published a paper demonstrating how CRISPR RNP technology can both knock out endogenous T-cell receptors and integrate replacement anti-cancer receptors.
The UCSF team has been using GenScript's latest single-strand DNA to improve non-viral gene knock-in efficiency. Working in collaboration with GenScript, the team engineered modifications to the DNA payload to promote co-localization and delivery (or 'shuttle') to the nucleus.
Most Read
Bio Jobs
News